青岛理工大学环境与市政工程学院;
以玉米秸秆为原料制备生物炭,通过加碱沉淀的方式对生物炭进行改性,并通过静态及动态实验分析了其对水中As(Ⅲ)的吸附机理及性能。结果表明,静态吸附符合准二级动力学模型以及Freundlich等温吸附模型,对As(Ⅲ)的吸附过程以非均匀多分子层的化学吸附为主,铁锰改性生物炭(FMBC)的最大静态吸附容量为20.63 mg/g; FMBC吸附As(Ⅲ)的适宜pH范围广,但共存物质中PO_43-、SiO_42-对吸附效果影响较大;进水流量及进水As(Ⅲ)浓度会影响动态吸附的有效床体积,Thomas模型和Yoon-Nelson模型对动态吸附曲线都有较好的拟合效果;在进水As(Ⅲ)浓度为200μg/L、流量为9 mL/min时,FMBC的最大动态吸附容量为1.41 mg/g。本研究可为FMBC处理含As(Ⅲ)废水的应用提供必要的数据支撑。
400 | 0 | 194 |
下载次数 | 被引频次 | 阅读次数 |
[1] AVILA-SANDOVAL C,JUNEZ-FERREIRA H,GONZALEZ-TRINIDAD J,et al.Spatio-temporal analysis of natural and anthropogenic arsenic sources in groundwater flow systems[J].International Journal of Environmental Research and Public Health,2018,15(11):153-166.
[2] 殷悦,刘长青,李琳琳,等.低成本吸附材料吸附水中砷的研究进展[J].青岛理工大学学报,2021,42(4):58-64.YIN Yue,LIU Changqing,LI Linlin,et al.Research progress of low-cost adsorbents for removal of arsenic from aqueous solutions[J].Journal of Qingdao University of Technology,2021,42(4):58-64.
[3] RASHEED H,KAY P,SLACK R,et al.Human exposure assessment of different arsenic species in household water sources in a high risk arsenic area[J].Science of the Total Environment,2017,584/585:631-641.
[4] ALCHOURON J,NAVARATHNA C,CHLUDIL H D,et al.Assessing South American Guadua chacoensis bamboo biochar and Fe3O4 nanoparticle dispersed analogues for aqueous arsenic(V) remediation[J].Science of the Total Environment,2020,706:135943.
[5] BENIS K Z,DAMUCHALI A M,SOLTAN J,et al.Treatment of aqueous arsenic:A review of biochar modification methods[J].Science of the Total Environment,2020,739:139750.
[6] MOHAN D,SARSWAT A,YONG S O,et al.Organic and inorganic contaminants removal from water with biochar,a renewable,low cost and sustainable adsorbent:A critical review[J].Bioresource Technology,2014,160:191-202.
[7] XIAO F,CHENG J,CAO W,et al.Removal of heavy metals from aqueous solution using chitosan-combined magnetic biochars[J].Journal of Colloid and Interface Science,2019,540:579-584.
[8] TIAN L,LI H,CHANG Z,et al.Biochar modification to enhance arsenic removal from water:A review[J].Environmental Geochemistry and Health,2022,45(6):2763-2778.
[9] NOVAIS S V,ZENERO M D O,TRONTO J,et al.Poultry manure and sugarcane straw biochars modified with MgCl2 for phosphorus adsorption[J].Journal of Environmental Management,2018,214:36-44.
[10] 苏浩杰,吴俊峰,王召东,等.金属改性生物炭及其去除水中氮、磷的研究进展[J].工业水处理,2022,42(11):46-55.SU Haojie,WU Junfeng,WANG Zhaodong,et al.Research progress of metal-modified biochar and its removal of nitrogen and phosphorus in water[J].Industrial Water Treatment,2022,42(11):46-55.
[11] LIN L,SONG Z,KHAN Z H,et al.Enhanced As(Ⅲ) removal from aqueous solution by Fe-Mn-La-impregnated biochar composites[J].Science of the Total Environment,2019,686:1185-1193.
[12] LIU X,ZHANG G,LIN L,et al.Synthesis and characterization of novel Fe-Mn-Ce ternary oxide-biochar composites as highly efficient adsorbents for As(Ⅲ) removal from aqueous solutions[J].Materials,2018,11(12):2445.
[13] WU J,HUANG D,LIU X,et al.Remediation of As(Ⅲ) and Cd(Ⅱ) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar[J].Journal of Hazardous Materials,2018,348:10-19.
[14] LIN L,QIU W,WANG D,et al.Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite:Characterization and mechanism[J].Ecotoxicology and Environmental Safety,2017,144:514-521.
[15] DUTTA GUPTA A,SHEKHER GIRI B,RENE E R,et al.Batch and continuous reactor studies for the adsorption of As(Ⅲ) from wastewater using a hybrid biochar loaded with transition metal oxides:Kinetics and mass transfer analysis[J].Environmental Engineering Research,2020,26(6):200438.
[16] HE R,PENG Z,LYU H,et al.Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal[J].Science of the Total Environment,2018,612:1177-1186.
[17] YIN Y,XU G,XU Y,et al.Adsorption of inorganic and organic phosphorus onto polypyrrole modified red mud:Evidence from batch and column experiments[J].Chemosphere,2022,286(3):131862.
[18] WEI Y,WEI S,LIU C,et al.Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics[J].Water Research,2019,167:115107.
[19] CHEN T,WEI Y,YANG W,et al.Highly efficient As(Ⅲ) removal in water using millimeter-sized porous granular MgO-biochar with high adsorption capacity[J].Journal of Hazardous Materials,2021,416:125822.
[20] WANG Y P,LIU Y L,TIAN S Q,et al.Straw biochar enhanced removal of heavy metal by ferrate[J].Journal of Hazardous Materials,2021,416:126128.
[21] 吴昆明,郭华明,魏朝俊.改性磁铁矿对水体中砷的吸附特性研究[J].岩矿测试,2017,36(6):624-632.WU Kunming,GUO Huaming,WEI Chaojun.Adsorption characteristics of arsenic in water by modified magnetite[J].Rock and Mineral Analysis,2017,36(6):624-632.
[22] 刘光全,张华,吴百春.改性花生壳粉对钙离子的吸附特性研究[J].环境工程学报,2011,5(12):2733-2738.LIU Guangquan,ZHANG Hua,WU Baichun.Study on adsorption characteristics of calcium ions on modified peanut shell[J].Chinese Journal of Environmental Engineering,2011,5(12):2733-2738.
[23] LIU X,GAO M,QIU W,et al.Fe-Mn-Ce oxide-modified biochar composites as efficient adsorbents for removing As(Ⅲ) from water:Adsorption performance and mechanisms[J].Environmental Science and Pollution Research,2019,26(17):17373-17382.
[24] GUO J,YAN C,LUO Z,et al.Synthesis of a novel ternary HA/Fe-Mn oxides-loaded biochar composite and its application in cadmium(Ⅱ) and arsenic(V) adsorption[J].Journal of Environmental Sciences,2019,85:168-176.
[25] 尹亚欧,李科林,胡熙,等.铁改性蛭石-腐殖酸复合吸附剂对As(Ⅲ)吸附条件的响应面优化与吸附机理研究[J].矿业研究与开发,2020,40(4):122-129.YIN Yaou,LI Kelin,HU Xi,et al.Response surface optimization and adsorption mechanism of iron-modified vermiculite and humic acid composite adsorbent on the As(Ⅲ) adsorption conditions[J].Mining Research and Development,2020,40(4):122-129.
[26] SANTOS A F,ARIM A L,LOPES D V,et al.Recovery of phosphate from aqueous solutions using calcined eggshell as an eco-friendly adsorbent[J].Journal of Environmental Management,2019,238:451-459.
[27] 刘斌,李孟斌,王红华.水中染料在活性炭上的动态吸附行为研究[J].工业水处理,2018,38(5):21-24.LIU Bin,LI Mengbin,WANG Honghua.Dynamic adsorption behavior of activated carbon on dyes in water[J].Industrial Water Treatment,2018,38(5):21-24.
[28] 安强,朱胜,缪乐,等.碱改柚子皮生物炭对水体中Mn(Ⅱ)的动态吸附研究[J].重庆大学学报,2021,44(6):96-108.AN Qiang,ZHU Sheng,MIAO Yue,et al.The dynamic adsorption of Mn(Ⅱ) in water by alkali modified pomelo peel biochar[J].Journal of Chongqing University,2021,44(6):96-108.
[29] 袁林,陈滢,刘敏,等.改性纳米纤维素对磷的动态吸附及再生[J].化工进展,2020,39(7):2907-2914.YUAN Lin,CHEN Ying,LIU Min,et al.Dynamic adsorption of phosphorus by modified nano cellulose and its regeneration[J].Chemical Industry and Engineering Progress,2020,39(7):2907-2914.
基本信息:
DOI:
中图分类号:X703
引用信息:
[1]张路,刘长青,殷悦等.铁锰改性生物炭处理低浓度含As(Ⅲ)废水的研究[J].青岛理工大学学报,2024,45(05):76-85+93.
基金信息:
国家重点研发计划资助项目(2020YFD1100303)