28 | 0 | 6 |
下载次数 | 被引频次 | 阅读次数 |
桥梁在复杂恶劣的服役环境中运行,其健康监测系统常受各种环境因素的影响,导致系统中存在噪声。噪声会显著降低桥梁结构健康监测数据的准确性,因此,对桥梁健康监测信号进行去噪处理至关重要。提出了一种选择小波去噪参数的方法。引入稀疏指数(SI)作为量化评价指标,用于选择最佳的小波基;利用统计过程控制图理论的迭代算法,确定阈值。仿真结果表明,该方法相比其他方法具有更好的去噪效果,并能更有效地处理桥梁结构健康监测数据。
Abstract:The operation of bridges in complex and harsh service environments is often influenced by various environmental factors, leading to the presence of noise in their health monitoring systems. Noise can significantly reduce the accuracy of bridge structural health monitoring data. Therefore, it is crucial to denoise the bridge health monitoring signals. This study proposes a method for selecting wavelet denoising parameters. The sparse index(SI) is introduced and used as a quantification evaluation metric to select the optimal wavelet basis. A threshold is determined by using an iterative algorithm based on the theory of statistical process control charts. Simulation results demonstrate that compared with other methods, this method provides better denoising effects and can process bridge structural health monitoring data more effectively.
[1] JIANG X,LANG Q,JING Q,et al.An improved wavelet threshold denoising method for health monitoring data:A case study of the Hong Kong-Zhuhai-Macao bridge immersed tunnel[J].Applied Sciences,2022,12(13):6743.
[2] 于重重,王竞燕,谭励,等.基于时频分析方法的桥梁结构健康监测系统[J].数据采集与处理,2011,26(5):585-591.YU Chongchong,WANG Jingyan,TAN Li,et al.Bridge structural health monitoring system using time-frequency analysis method[J].Journal of Data Acquisition and Processing,2011,26(5):585-591.
[3] 刘海涛.基于小波分析的湖南罗富冲滑坡监测数据去噪与预警[J].科学技术创新,2024(6):221-224.LIU Haitao.Wavelet analysis-based denoising and early warning of monitoring data in Luofuchong landslide,Hunan Province[J].Scientific and Technological Innovation,2024(6):221-224.
[4] ADELI H,JIANG X.Dynamic fuzzy wavelet neural network model for structural system identification[J].Journal of Structural Engineering,2006,132(1):102-111.
[5] ADDISION P S.The illustrated wavelet transform handbook:Introductory theory and applications in science[M].Boca Raton:Science Engineering Medicine & Finance Institute of Physics Publishing,2002.
[6] ADELI H,KIM H.Wavelet-hybrid feedback-least mean square algorithm for robust control of structures[J].Journal of Structural Engineering,2004,130(1):128-137.
[7] KARIM A,ADELI H.Incident detection algorithm using wavelet energy representation of traffic patterns[J].American Society of Civil Engineers,2002,128(3):232-242.
[8] WIJAYA D R,SARNO R,ZULAIKA E.Information quality ratio as a novel metric for mother wavelet selection[J].Chemometrics and Intelligent Laboratory Systems,2016,160:59-71.
[9] 马杭,陆文总,耿世宇,等.基于改进阈值函数的小波降噪方法研究[J].激光杂志,2023,44(10):19-24.MA Hang,LU Wenzong,GENG Shiyu,et al.Research on wavelet denoising method based on improved threshold function[J].Laser Journal,2023,44(10):19-24.
[10] BAYER F M,KOZAKEVICIUS A J,CINTRA R J.An iterative wavelet threshold for signal denoising[J].Signal Processing,2019,162:10-20.
[11] 徐晗昕,俞斌杰,柳丽,等.改进小波阈值函数在手部姿态获取中的应用[J].传感器与微系统,2023,42(11):165-168.XU Hanxin,YU Binjie,LIU Li,et al.Application of improved wavelet threshold function inhand pose acquisition[J].Transducer and Microsystem Technologies,2023,42(11):165-168.
[12] SALEH M,KARFOUL A,AMAR K,et al.Efficient stepsize selection strategy for givens parametrized ICA applied to EEG denoising[J].IEEE Signal Processing Letters,2017,24 (6):882-886.
[13] 徐景秀,张青.改进小波软阈值函数在图像去噪中的研究应用[J].计算机工程与科学,2022,44(1):92-101.XU Jingxiu,ZHANG Qing.Research and application of an improved waveletsoft threshold function in image denoising[J].Computer Engineering and Science,2022,44(1):92-101.
[14] 沙磊.一种新小波阈值算法的变形监测数据去噪方法[J].大地测量与地球动力学,2023,43(8):847-850.SHA Lei.A new wavelet threshold algorithm for deformation monitoring data denoising[J].Journal of Geodesy and Geodynamics,2023,43(8):847-850.
[15] GROSSMANN A,MORLET J.Decomposition of hardy functions into square integrable wavelets of constant shape[J].Siam Journal on Mathematical Analysis,1984,15(4):723-736.
[16] LIU C Y,YAO C L,XIONG J.Geophysical potential field anomaly separation method with optimal mother wavelet and spatial locating multiresolution analysis (MRA)[J].IEEE Access,2019,(7):62840-62851.
[17] GOH H H,LIAO L,ZHANG D,et al.Denoising transient power quality disturbances using an improved adaptive wavelet threshold method based on energy optimization[J].Journal of Modern Power Systems and Clean Energy,2022,15(9):3081.
[18] SRIVASTAVA M,ANDERSON C L,FREED J H.A new wavelet denoising method for selecting decomposition levels and noise thresholds[J].IEEE Access Practical Innovations Open Solutions,2016,4:3862-3877.
[19] ARSHAD W,ABBAS N,RIAZ M,et al.Simultaneous use of runs rules and auxiliary information with exponentially weighted moving average control charts[J].Quality and Reliability Engineering,2017,33(2):323-336.
[20] COHEN A,ATOUI M A.On wavelet-based statistical process monitoring[J].Transactions of the Institute of Measurement and Control,2020,(3):1-14.
基本信息:
DOI:
中图分类号:TN911.4;U446
引用信息:
[1]张云龙,夏云霞,闰金明等.基于小波阈值算法的桥梁结构健康监测信号去噪研究[J].青岛理工大学学报,2025,46(03):9-16+71.
基金信息:
山东省自然科学基金(ZR2023ME105)